Genetic Algorithm for Shape Detection
نویسنده
چکیده
The localisation of graphical primitives is important task in image processing. This paper discusses problems of automatic computer-based detection and localisation of elementary shape in image. A genetic algorithm is used for this task. The using of genetic algorithm allows efficiently reduce time needed to scan a task state space. A modification of genetic algorithm for shape detection is presented. A review of basic algorithms for shape detection is given, followed by short genetic algorithm review. The specifics of using a genetic algorithm for presented task are presented. In addition, some experiment results are shown. The results are demonstrated on circle, ellipse and oblong detection. This paper is based upon work sponsored by the Ministry of Education of the Czech Republic under research and development project LN00B084. Copies of this report are available on http://www.kiv.zcu.cz/publications/ or by surface mail on request sent to the following address: University of West Bohemia in Pilsen Department of Computer Science and Engineering Univerzitni 8 30614 Pilsen Czech Republic Copyright © 2002 University of West Bohemia in Pilsen, Czech Republic
منابع مشابه
Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کامل